Helicity Evolution at Small x

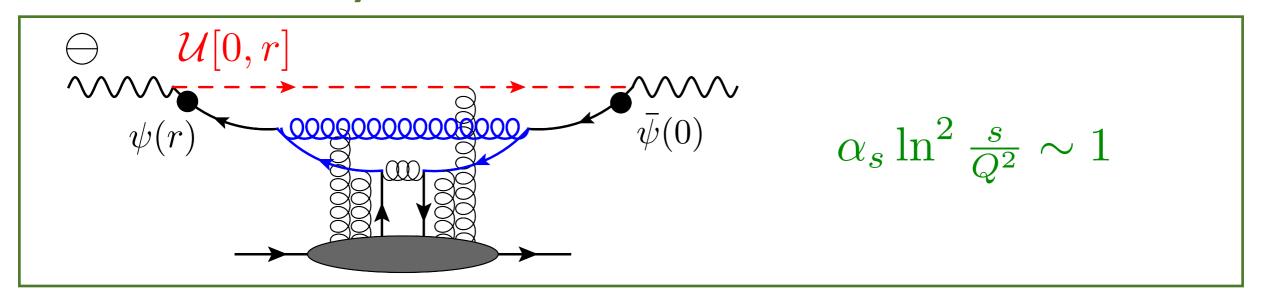
Matthew D. Sievert with Daniel Pitonyak and Yuri Kovchegov

Tuesday Feb. 9, 2016

1511.06737 1505.01176 RBRC Workshop: Emerging Spin and Transverse Momentum Effects in pp / pA

Overview

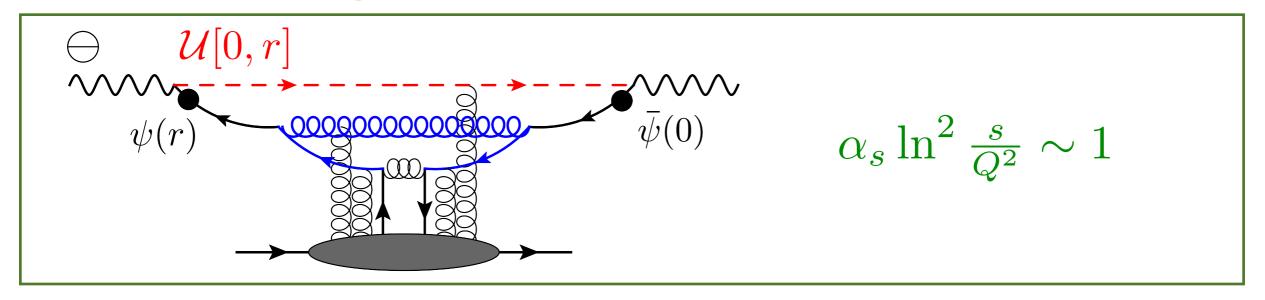
Small-x Helicity Evolution



 Quark helicity at very small x evolves by the radiation of soft polarized quarks and gluons.

Overview

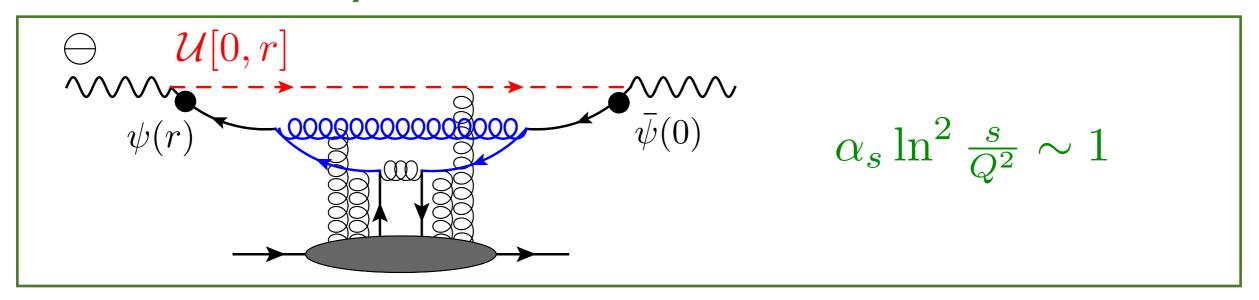
Small-x Helicity Evolution



- Quark helicity at very small x evolves by the radiation of soft polarized quarks and gluons.
- We can formulate a small-x evolution equation for the quark helicity, which appears to show rapid growth at small x.

Overview

Small-x Helicity Evolution



- Quark helicity at very small x evolves by the radiation of soft polarized quarks and gluons.
- We can formulate a small-x evolution equation for the quark helicity, which appears to show rapid growth at small x.
- But helicity evolution is much more complex than unpolarized small-x evolution....

Motivation: Proton Spin Puzzle

• The "Proton Spin Budget" is described by the Jaffe-Manohar Sum Rule.

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

Motivation: Proton Spin Puzzle

• The "Proton Spin Budget" is described by the Jaffe-Manohar Sum Rule.

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

- Modern measurements cannot account for the total spin of the proton!
 - → Quark spins from polarized DIS
 - → Gluon spins from in polarized proton-proton collisions

DSSV ('09-'14) fits: data from 0.001 < x < 1

$$\Delta \Sigma \approx 0.25 \ (25\%)$$

$$\Delta G \approx 0.2 \ (40\%)$$

Motivation: Proton Spin Puzzle

• The "Proton Spin Budget" is described by the Jaffe-Manohar Sum Rule.

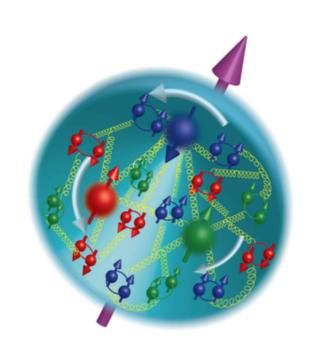
$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

- Modern measurements cannot account for the total spin of the proton!
 - → Quark spins from polarized DIS
 - → Gluon spins from in polarized proton-proton collisions
- Proton structure is much more complex than previously believed!
 - → Orbital angular momentum?
 - → Polarization at very small x?

DSSV ('09-'14) fits: data from 0.001 < x < 1

$$\Delta \Sigma \approx 0.25 \ (25\%)$$

$$\Delta G \approx 0.2 \ (40\%)$$



$$\underline{\phi_{\alpha\beta}(x,\vec{k}_{\perp})} = \int \frac{d^{2-r}r}{(2\pi)^3} e^{ik\cdot r} \langle h(p,S) | \bar{\psi}_{\beta}(0) \mathcal{U}[0,r] \psi_{\alpha}(r) | h(p,S) \rangle$$

Transverse Momentum Dependent

Parton Distribution Functions

$$\phi_{\alpha\beta}(x,\vec{k}_{\perp}) = \int \frac{d^{2-r}}{(2\pi)^3} e^{ik\cdot r} \langle h(p,S) | \bar{\psi}_{\beta}(0) \mathcal{U}[0,r] \psi_{\alpha}(r) | h(p,S) \rangle$$

Transverse Momentum Dependent

Parton Distribution Functions

$$\sum_{\sigma\lambda} \langle h(p) | b_{k\sigma}^{\dagger} b_{k\lambda} | h(p) \rangle \ [\bar{U}_{\sigma}(k)]_{\beta} [U_{\lambda}(k)]_{\alpha}$$

$$\phi_{\alpha\beta}(x,\vec{k}_{\perp}) = \int \frac{d^{2-r}}{(2\pi)^3} e^{ik\cdot r} \langle h(p,S) | \bar{\psi}_{\beta}(0) \mathcal{U}[0,r] | \psi_{\alpha}(r) | h(p,S) \rangle$$

Transverse Momentum Dependent

Parton Distribution Functions

$\sum_{\sigma\lambda} \langle h(p) b_{k\sigma}^{\dagger} b_{k\lambda} h(p) \rangle$	$[\bar{U}_{\sigma}(k)]_{\beta}[U_{\lambda}(k)]_{\alpha}$
$\sigma\lambda$	

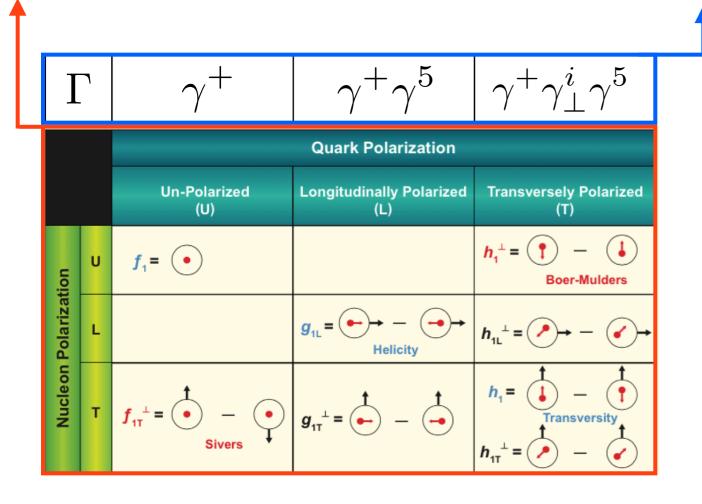
	Ι	.	γ^+	$\gamma^+ \gamma^5$	$\gamma^+ \gamma_{\perp}^i \gamma^5$
Quark Polarization					
			Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
	tion	5	$f_1 = \bullet$		$h_1^{\perp} = $
	Nucleon Polarization	L		g _{1L} =	h _{1L} =
	Nucleon	т	$f_{1T}^{\perp} = \bullet$ - \bullet Sivers	$g_{1T}^{\perp} = \begin{array}{c} \uparrow \\ - \end{array}$	$h_{1} = \begin{array}{c} \uparrow \\ - \uparrow \\ \uparrow \\ h_{1T} \end{array}$ Transversity $- \begin{array}{c} \uparrow \\ \uparrow \\ - \end{array}$

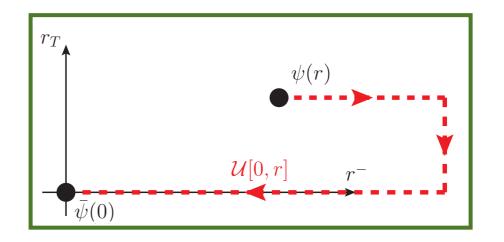
$$\underline{\phi_{\alpha\beta}(x,\vec{k}_{\perp})} = \int \frac{d^{2-r}}{(2\pi)^3} e^{ik\cdot r} \langle h(p,S) | \underline{\bar{\psi}_{\beta}(0)} \mathcal{U}[0,r] \underline{\psi_{\alpha}(r)} | h(p,S) \rangle$$

Transverse Momentum Dependent

Parton Distribution Functions

$\sum \langle h(p) b_{k\sigma}^{\dagger}b_{k\lambda} h(p)\rangle$	$[\bar{U}_{\sigma}(k)]_{\beta}[U_{\lambda}(k)]_{\alpha}$
$\sigma\lambda$	





Staple-shaped Gauge Link encodes final-state interactions

M. Sievert

TMD's at Large x

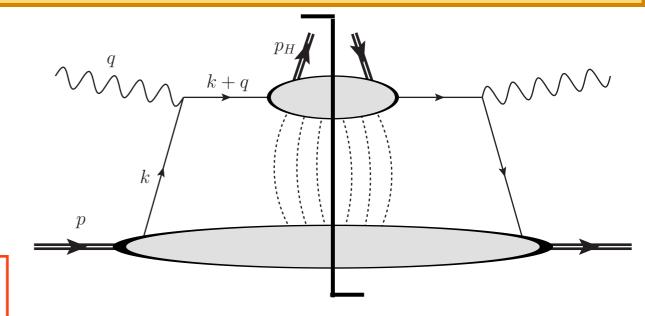
Semi-Inclusive

Deep Inelastic Scattering (SIDIS)

$$e + p \rightarrow e' + h + X$$

Large-x Kinematics:
$$\hat{s} \sim Q^2 \gg k_T^2$$

$$x = \frac{Q^2}{\hat{s} + Q^2} \sim \mathcal{O}(1)$$



TMD's at Large x

Semi-Inclusive

Deep Inelastic Scattering (SIDIS)

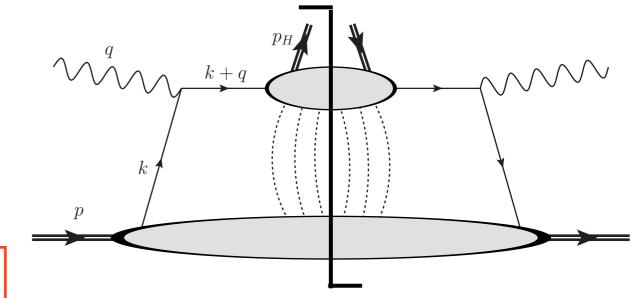
$$e + p \rightarrow e' + h + X$$

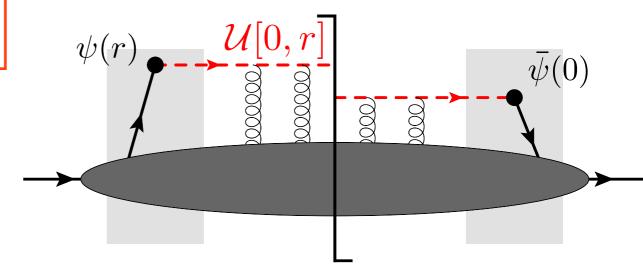
Large-x Kinematics: $\hat{s} \sim Q^2 \gg k_T^2$

$$\hat{s} \sim Q^2 \gg k_T^2$$

$$x = \frac{Q^2}{\hat{s} + Q^2} \sim \mathcal{O}(1)$$

- Photon knocks out a quark from the proton.
- Propagates through the gauge field before escaping





TMD's at Large x

Semi-Inclusive

Deep Inelastic Scattering (SIDIS)

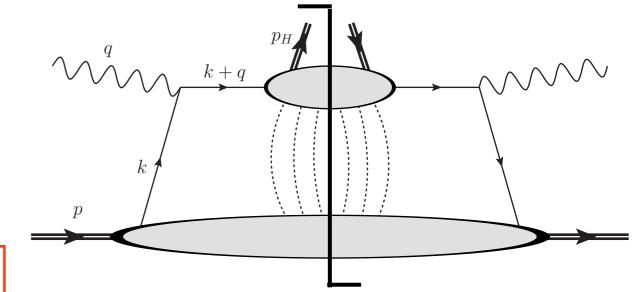
$$e + p \rightarrow e' + h + X$$

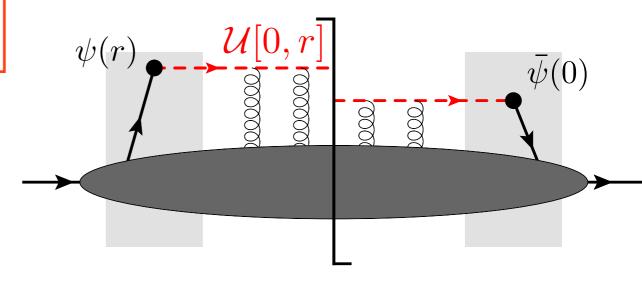
Large-x Kinematics: $\hat{s} \sim Q^2 \gg k_T^2$

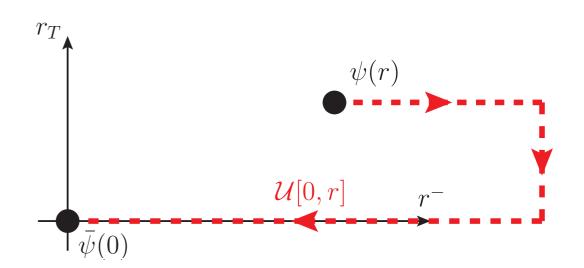
$$\hat{s} \sim Q^2 \gg k_T^2$$

$$x = \frac{Q^2}{\hat{s} + Q^2} \sim \mathcal{O}(1)$$

- Photon knocks out a quark from the proton.
- Propagates through the gauge field before escaping
- Staple-shaped gauge link encodes final-state interactions







TMD's at Small x

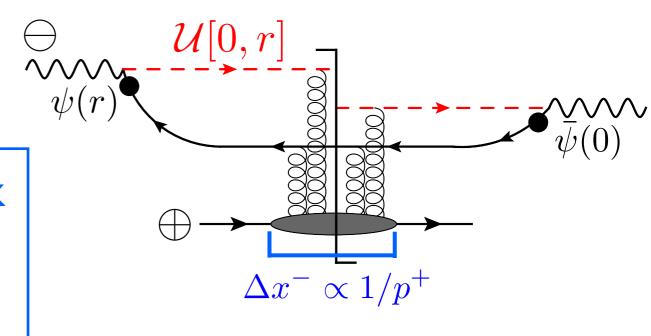
Small-x Kinematics: $|\hat{s} \gg Q^2 \gg k_T^2$

$$\Delta t < \frac{1}{m_N x}$$

$$\hat{s} \gg Q^2 \gg k_T^2$$

$$x = \frac{Q^2}{\hat{s}} \ll 1$$

- Photon creates a quark / antiquark pair which propagates through the proton.
- Quark transport is x-suppressed.



TMD's at Small x

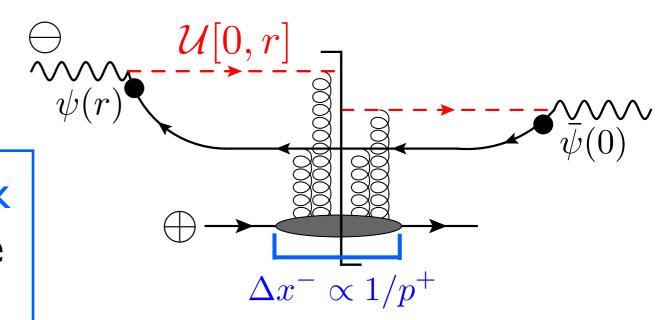
Small-x Kinematics: $|\hat{s} \gg Q^2 \gg k_T^2$

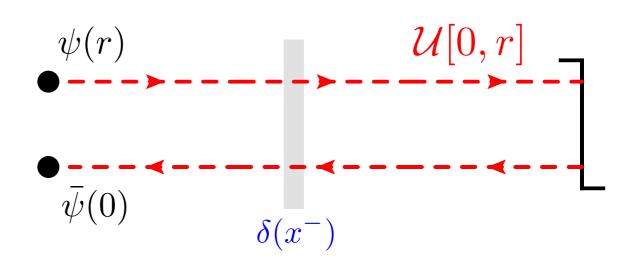
$$\Delta t < \frac{1}{m_N x}$$

$$\hat{s} \gg Q^2 \gg k_T^2$$

$$x = \frac{Q^2}{\hat{s}} \ll 1$$

- Photon creates a quark / antiquark pair which propagates through the proton.
- Quark transport is x-suppressed.
- Proton is Lorentz-contracted to a "shockwave".
- Gauge link covers the entire proton.
- → Infinite dipole degrees of freedom at small x

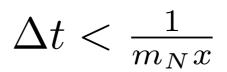




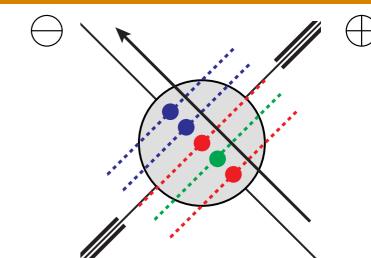
$$S_{xy} = \frac{1}{N_c} \text{Tr} \left[V_x V_y^{\dagger} \right]$$

Small-x Initial Conditions: Classical Gluon Fields

- Long-lived projectile sees whole target coherently.
- High gluon density at small x enhances multiple scattering



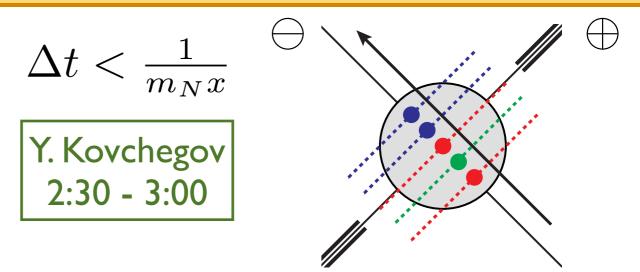
Y. Kovchegov 2:30 - 3:00

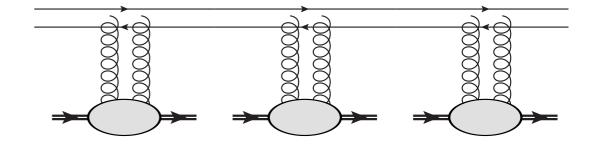


Small-x Initial Conditions: Classical Gluon Fields

- Long-lived projectile sees whole target coherently.
- → High gluon density at small x enhances multiple scattering
- High density rescattering can be systematically re-summed
- Classical gluon fields!

Nucleus: $\alpha_s^2 A^{1/3} \sim 1$ Proton: $\alpha_s \rho \sim 1$





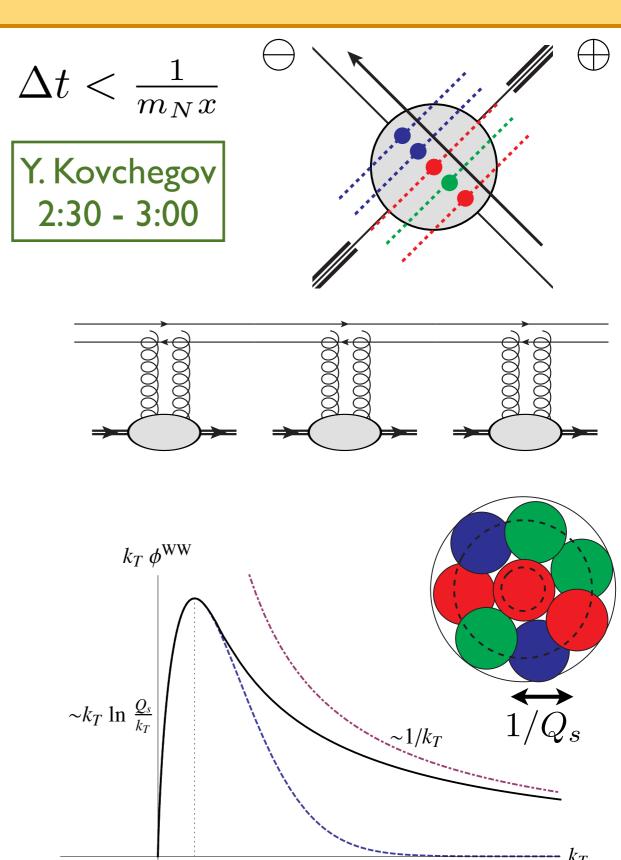
Small-x Initial Conditions: Classical Gluon Fields

- Long-lived projectile sees whole target coherently.
- → High gluon density at small x enhances multiple scattering
- High density rescattering can be systematically re-summed
- Classical gluon fields!

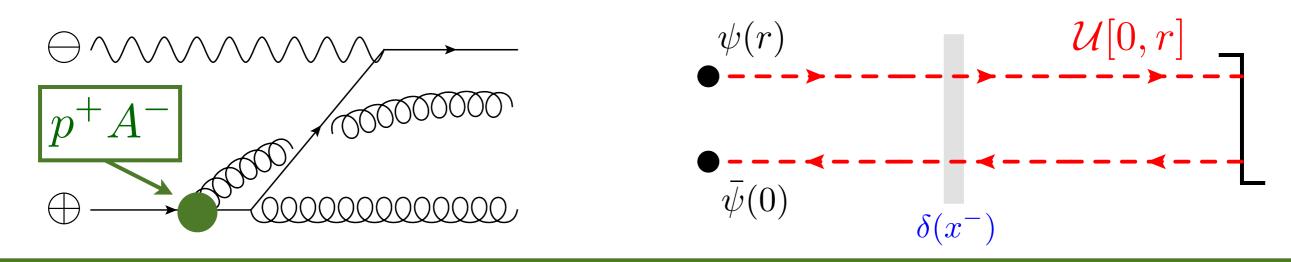
Nucleus: $\alpha_s^2 A^{1/3} \sim 1$ Proton: $\alpha_s \rho \sim 1$

 Charge density defines a hard momentum scale which screens the IR gluon field.

Both:
$$\begin{array}{c} Q_s^2 \propto \alpha_s^2 A^{1/3} \propto \alpha_s \rho \\ Q_s^2 \gg \Lambda^2 \end{array}$$

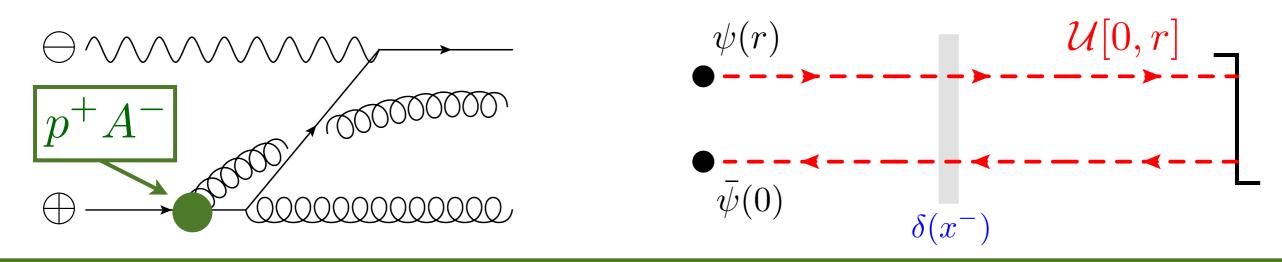


Quantum Evolution in the Light-Cone Gauge



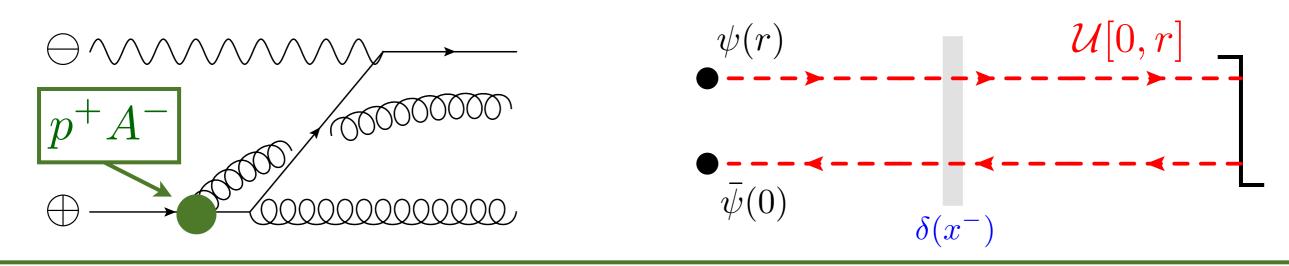
- ullet High-energy radiation from a \oplus moving particle couples to A^-
- \rightarrow In $A^- = 0$ gauge this radiation is suppressed.

Quantum Evolution in the Light-Cone Gauge



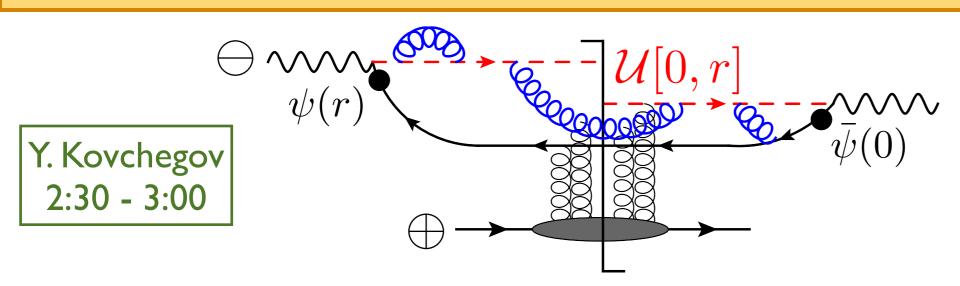
- ullet High-energy radiation from a \oplus moving particle couples to A^-
- \rightarrow In $A^- = 0$ gauge this radiation is suppressed.
- Quantum evolution requires long lifetimes to generate logarithms of a large phase space.
- Instantaneous t-channel particles do not evolve either.
- \rightarrow All evolution takes place within the \ominus moving particles.

Quantum Evolution in the Light-Cone Gauge



- ullet High-energy radiation from a \oplus moving particle couples to A^-
- \rightarrow In $A^- = 0$ gauge this radiation is suppressed.
- Quantum evolution requires long lifetimes to generate logarithms of a large phase space.
- Instantaneous t-channel particles do not evolve either.
- \rightarrow All evolution takes place within the \ominus moving particles.
- For classical fields and leading-log evolution, $A_{\perp}=0$ as well.
- The transverse part of the gauge link does not contribute.

Unpolarized Small-x Evolution

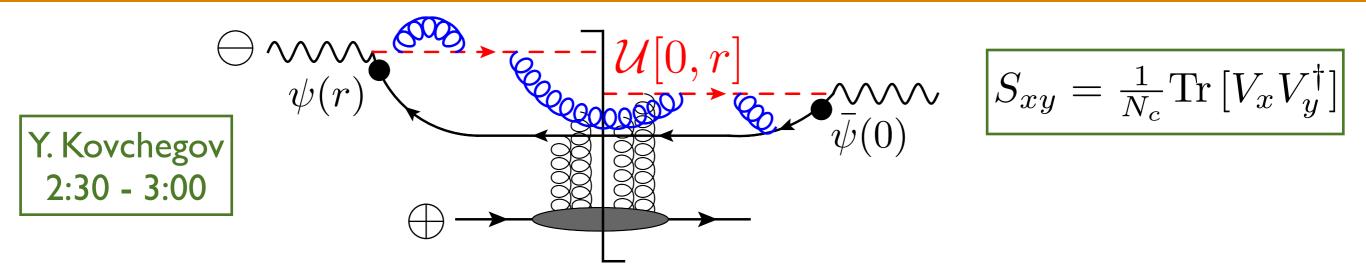


$$S_{xy} = \frac{1}{N_c} \text{Tr} \left[V_x V_y^{\dagger} \right]$$

- The quark dipole radiates soft gluons before and after scattering.
- ⇒ Evolution of the dipole scattering amplitude
- Re-sums single logarithms of x

$$\alpha_s \ln \frac{1}{x} \sim 1$$

Unpolarized Small-x Evolution



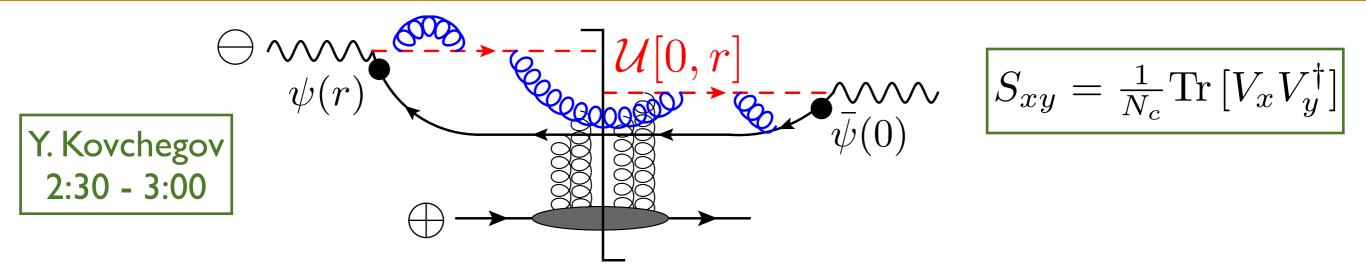
$$\frac{\partial}{\partial \ln s} \langle S_{xy} \rangle_{(s)} = \bar{\alpha}_s \int d^2 z \frac{(x_{\perp} - y_{\perp})^2}{(x_{\perp} - z_{\perp})^2 (z_{\perp} - y_{\perp})^2} \left[\langle S_{xz} S_{zy} \rangle_{(s)} - \langle S_{xy} \rangle_{(s)} \right]$$

- The quark dipole radiates soft gluons before and after scattering.
- ➡ Evolution of the dipole scattering amplitude
- → Re-sums single logarithms of x

$$\alpha_s \ln \frac{1}{x} \sim 1$$

- Some radiated gluons also rescatter in the target gauge field.
- → Non-linear evolution with a hierarchy of operators

Unpolarized Small-x Evolution



$$\frac{\partial}{\partial \ln s} \langle S_{xy} \rangle_{(s)} = \bar{\alpha}_s \int d^2 z \frac{(x_{\perp} - y_{\perp})^2}{(x_{\perp} - z_{\perp})^2 (z_{\perp} - y_{\perp})^2} \left[\langle S_{xz} \rangle_{(s)} \langle S_{zy} \rangle_{(s)} - \langle S_{xy} \rangle_{(s)} \right]$$

- The quark dipole radiates soft gluons before and after scattering.
- ⇒ Evolution of the dipole scattering amplitude
- → Re-sums single logarithms of x

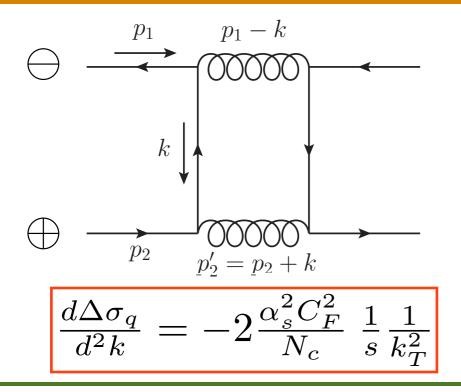
$$\alpha_s \ln \frac{1}{x} \sim 1$$

- Some radiated gluons also rescatter in the target gauge field.
- → Non-linear evolution with a hierarchy of operators
- ullet Evolution closes in the large N_c limit (BK eqn.) $Q_s^2(x) \sim \left(rac{1}{x}
 ight)^{0.3}$

Leading-Order Spin Dependence

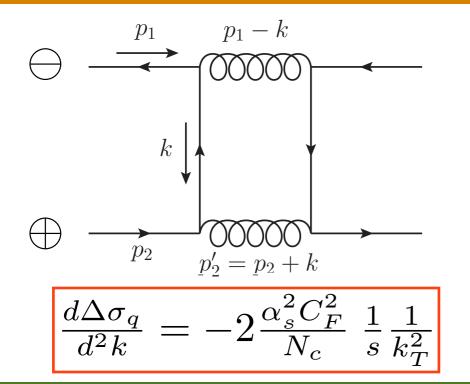
- High energy (small x) scattering is predominantly spin independent.
 - →BK evolution: total cross section, unpolarized quark distribution.

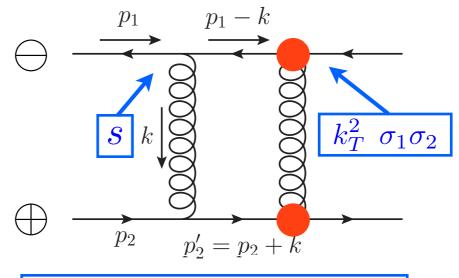
Leading-Order Spin Dependence



- High energy (small x) scattering is predominantly spin independent.
- ⇒BK evolution: total cross section, unpolarized quark distribution.
- Transporting quark polarization to small x is suppressed!
- Spin asymmetries, polarized quarks are suppressed at small x.

Leading-Order Spin Dependence

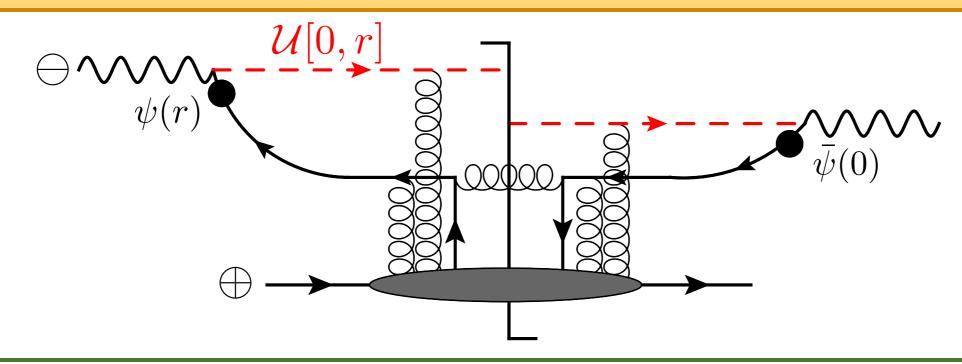




$$\frac{d\Delta\sigma_G}{d^2k} = +\frac{\alpha_s^2 C_F}{N_c} \frac{1}{s} \frac{1}{k_T^2}$$

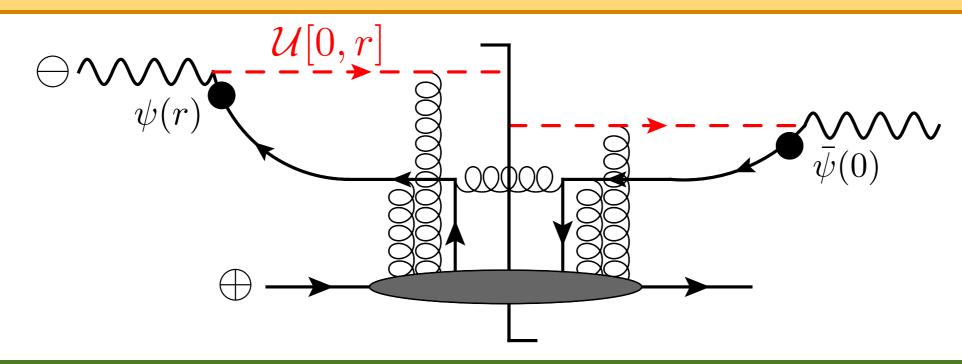
- High energy (small x) scattering is predominantly spin independent.
- ⇒BK evolution: total cross section, unpolarized quark distribution.
- Transporting quark polarization to small x is suppressed!
- ⇒Spin asymmetries, polarized quarks are suppressed at small x.
- Sub-leading gluon exchange can also transfer spin dependence.
- → Gluon exchange can mix with quark exchange.

Spin-Dependent Initial Conditions



- "Polarized Wilson Line" Coherent, spin-dependent scattering.
- → One spin-dependent exchange (more are suppressed)
- → Dressed by multiple unpolarized scattering

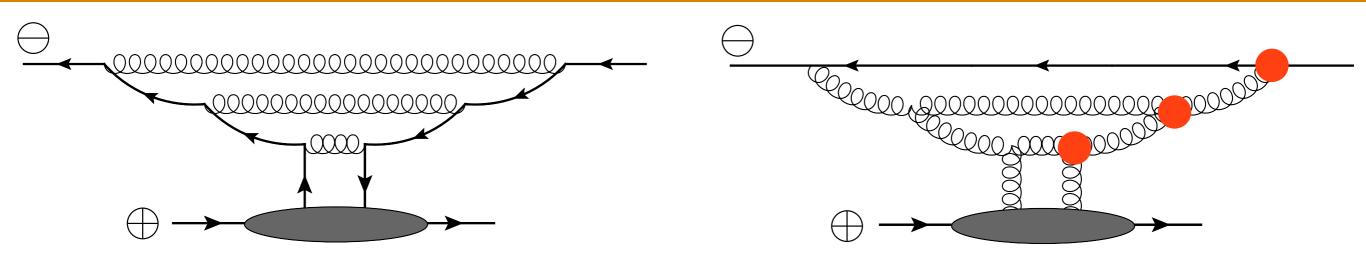
Spin-Dependent Initial Conditions



- "Polarized Wilson Line" Coherent, spin-dependent scattering.
- →One spin-dependent exchange (more are suppressed)
- → Dressed by multiple unpolarized scattering
- "Polarized Dipole Amplitude":
- → Quark (gauge link) scatters by an unpolarized Wilson line.
- Fermion (antiquark) scatters by a polarized Wilson line.

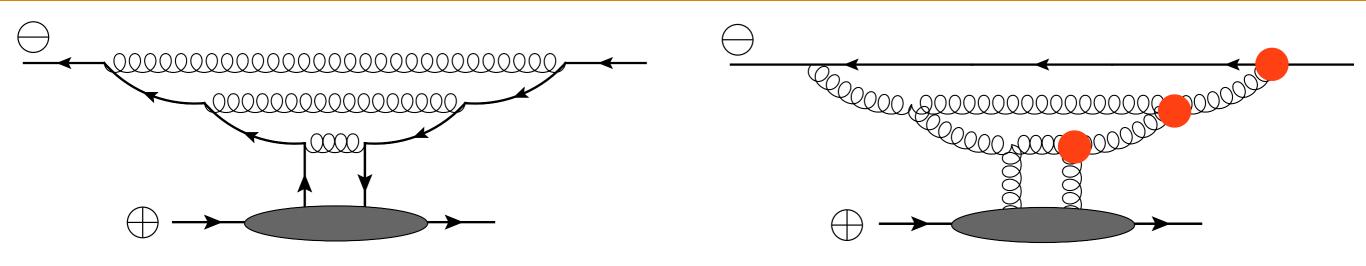
$$G_{xy} \equiv \frac{1}{2N_c} \text{Tr} \left[V_x V_y^{\dagger}(\sigma) + V_y(\sigma) V_x^{\dagger} \right]$$

Constructing Polarized Splitting Kernels



- Kernels: Spin-dependent quark / gluon wave functions
- → Soft quarks and soft gluons can mix (same order)

Constructing Polarized Splitting Kernels

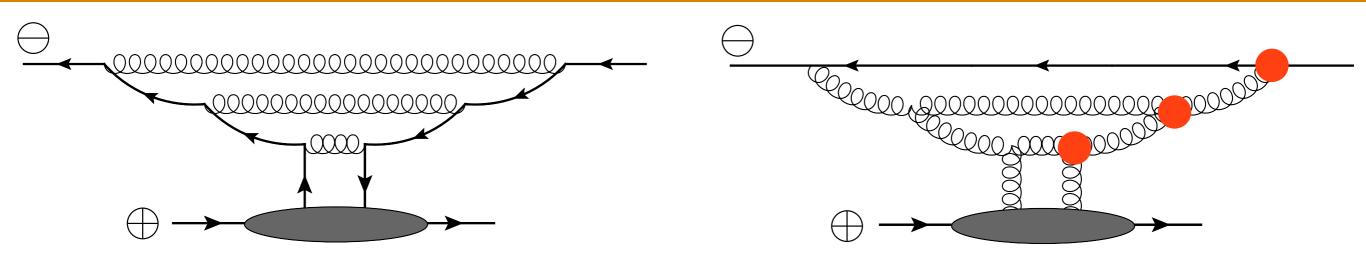


- Kernels: Spin-dependent quark / gluon wave functions
- → Soft quarks and soft gluons can mix (same order)
- Requires longitudinal and transverse momentum ordering

$$1 \gg z_1 \gg z_2 \gg \dots \gg \frac{Q^2}{s}$$
 $Q^2 \ll \frac{k_{1T}^2}{z_1} \ll \frac{k_{2T}^2}{z_2} \ll \dots$

Includes "infrared" phase space: $k_{1T}^2 \gg k_{2T}^2 \gg k_{1T}^2 \frac{z_2}{z_1}$

Constructing Polarized Splitting Kernels



- Kernels: Spin-dependent quark / gluon wave functions
- → Soft quarks and soft gluons can mix (same order)
- Requires longitudinal and transverse momentum ordering

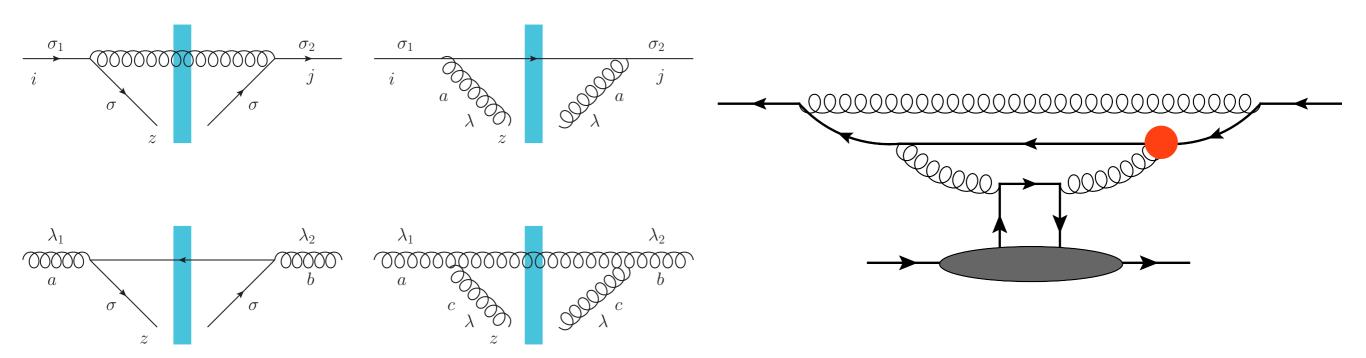
$$1 \gg z_1 \gg z_2 \gg \dots \gg \frac{Q^2}{s}$$
 $Q^2 \ll \frac{k_{1T}^2}{z_1} \ll \frac{k_{2T}^2}{z_2} \ll \dots$

Includes "infrared" phase space: $k_{1T}^2 \gg k_{2T}^2 \gg k_{1T}^2 \frac{z_2}{z_1}$

- Leads to double-log evolution.
- → Faster evolution than unpolarized BK!

$$\alpha_s \ln^2 \frac{1}{x} \sim 1$$

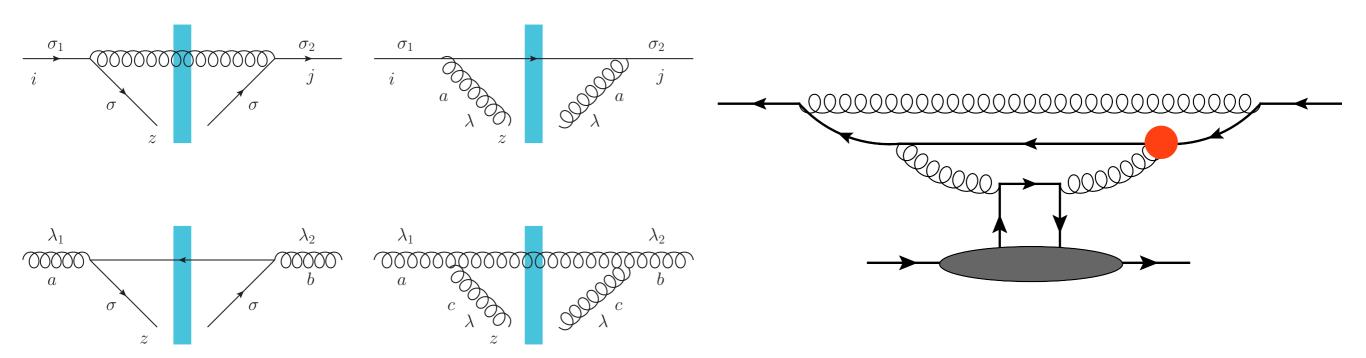
Solution: Ladder Evolution



• To solve, first keep only the kernels without unpolarized rescattering.

$$\frac{\alpha_s}{2\pi} \int \frac{dz}{z} \int \frac{dk_T^2}{k_T^2} \begin{pmatrix} C_F & 2C_F \\ -N_f & 4N_c \end{pmatrix}$$

Solution: Ladder Evolution



 To solve, first keep only the kernels without unpolarized rescattering.

$$\frac{\alpha_s}{2\pi} \int \frac{dz}{z} \int \frac{dk_T^2}{k_T^2} \begin{pmatrix} C_F & 2C_F \\ -N_f & 4N_c \end{pmatrix}$$

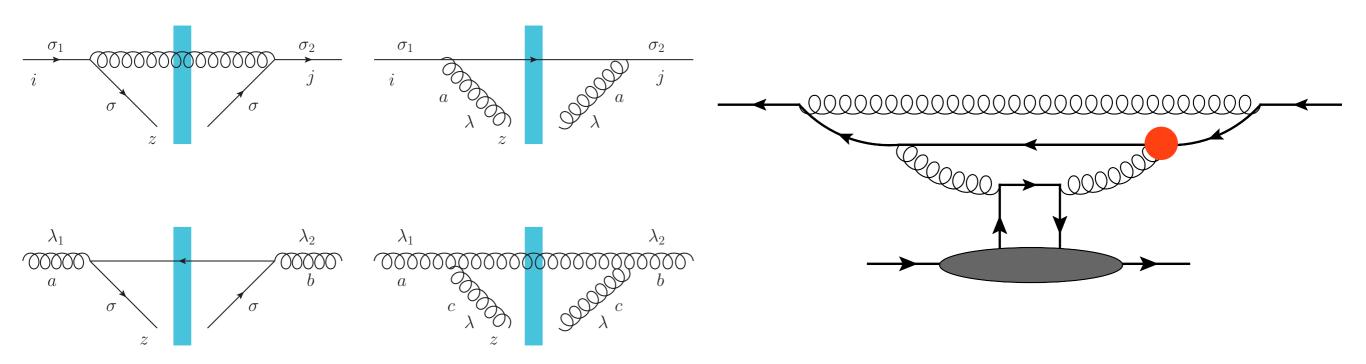
 Solve by Mellin transform and saddle point approximation.

$$\alpha_s = 0.3$$

$$N_c = N_f = 3$$

$$G_{xy}(s) \sim \left(\frac{s}{Q^2}\right)^{1.46}$$

Solution: Ladder Evolution



• To solve, first keep only the kernels without unpolarized rescattering.

$$\frac{\alpha_s}{2\pi} \int \frac{dz}{z} \int \frac{dk_T^2}{k_T^2} \begin{pmatrix} C_F & 2C_F \\ -N_f & 4N_c \end{pmatrix}$$

 Solve by Mellin transform and saddle point approximation.

$$\alpha_s = 0.3$$

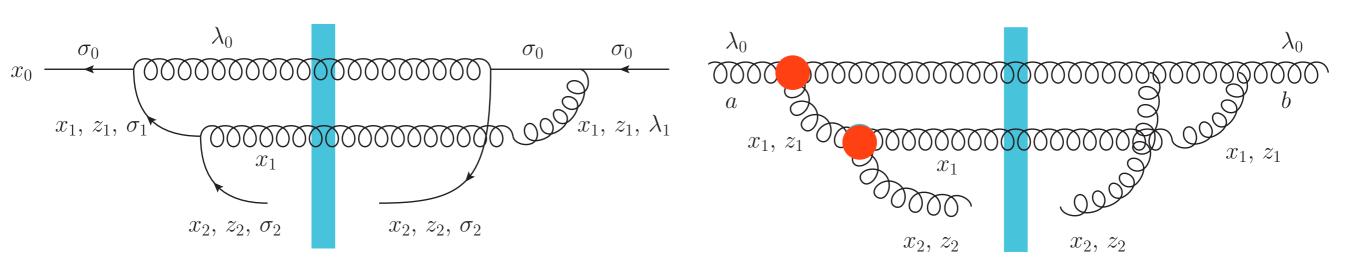
$$N_c = N_f = 3$$

$$G_{xy}(s) \sim \left(\frac{s}{Q^2}\right)^{1.46}$$

Fast growth of quark polarization at small x!

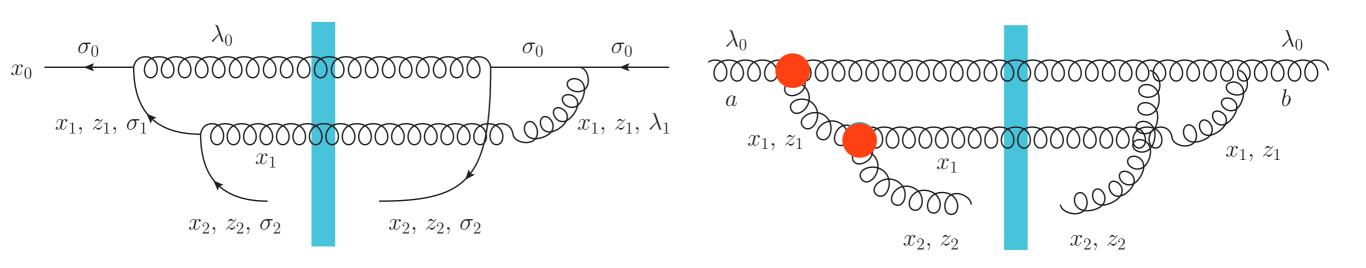
$$S_{xy}(s) \sim \left(\frac{s}{Q^2}\right)^{0.3}$$

The Complication: Non-Ladder Graphs



- Unlike BK or DGLAP, leading-log evolution is also generated by non-ladder graphs $k_{1T}^2\gg k_{2T}^2\gg k_{1T}^2\frac{z_2}{z_1}$
- Arises uniquely from the IR sector.

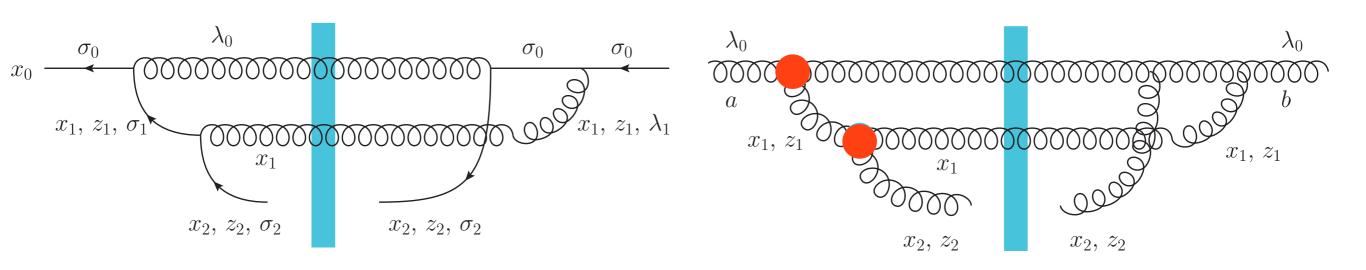
The Complication: Non-Ladder Graphs



- Unlike BK or DGLAP, leading-log evolution is also generated by non-ladder graphs $k_{1T}^2\gg k_{2T}^2\gg k_{1T}^2\frac{z_2}{z_1}$
- → Arises uniquely from the IR sector.
- Quark and antiquark non-ladder graphs cancel

$$G_{xy} \equiv \frac{1}{2N_c} \text{Tr} \left[V_x V_y^{\dagger}(\sigma) + V_y(\sigma) V_x^{\dagger} \right]$$

The Complication: Non-Ladder Graphs



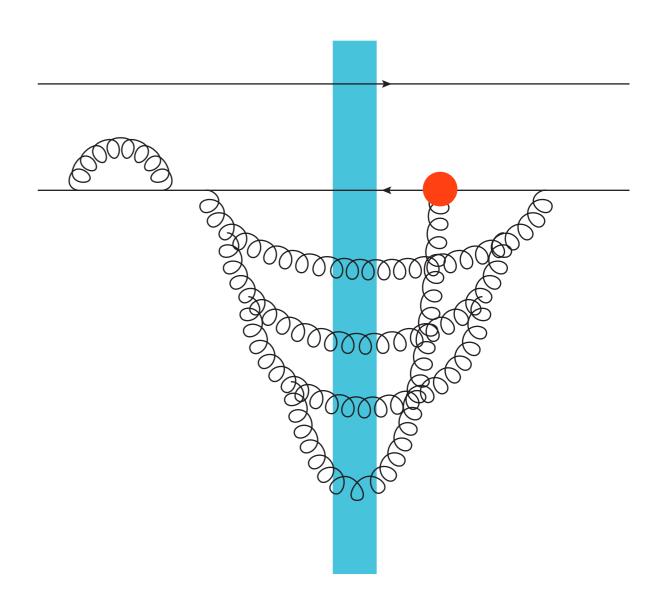
- Unlike BK or DGLAP, leading-log evolution is also generated by non-ladder graphs
- ightharpoonup Arises uniquely from the IR sector. $k_{1T}^2 \gg k_{2T}^2 \gg k_{1T}^2 \frac{z_2}{z_1}$
- Quark and antiquark non-ladder graphs cancel

$$G_{xy} \equiv \frac{1}{2N_c} \text{Tr} \left[V_x V_y^{\dagger}(\sigma) + V_y(\sigma) V_x^{\dagger} \right]$$

- Complication: Gluon non-ladder graphs do not cancel.
- → Ladder evolution is an unjustified truncation

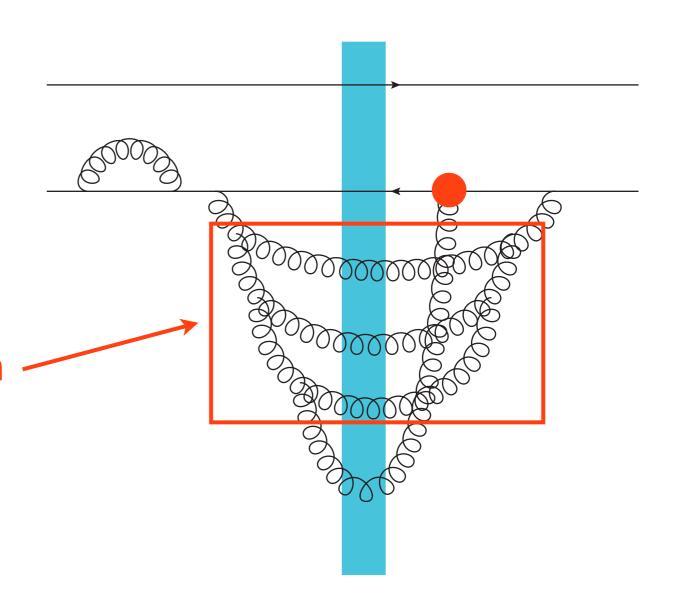
A Mess of Non-Ladder Gluons

- Non-ladder gluons can stack in complex ways which still generate leading logarithms.
- → Polarized gluons can "jump a rung" of evolution



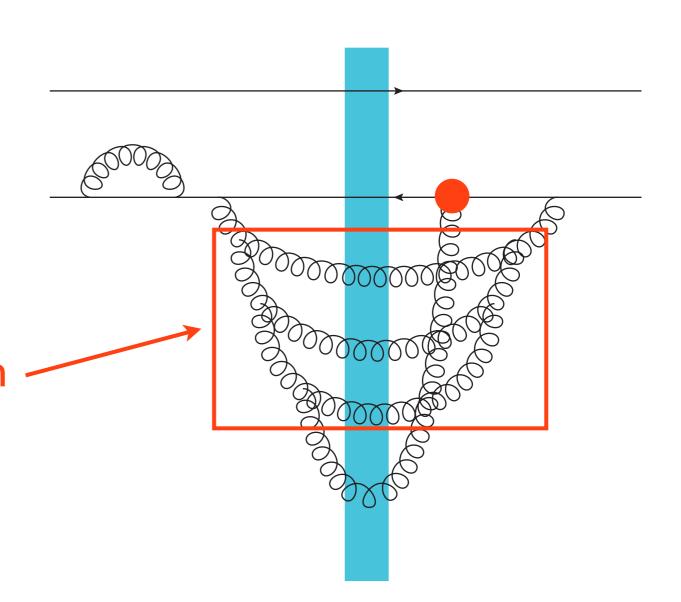
A Mess of Non-Ladder Gluons

- Non-ladder gluons can stack in complex ways which still generate leading logarithms.
- → Polarized gluons can "jump a rung" of evolution
- ➡ Even unpolarized BK evolution in an intermediate step can contribute!



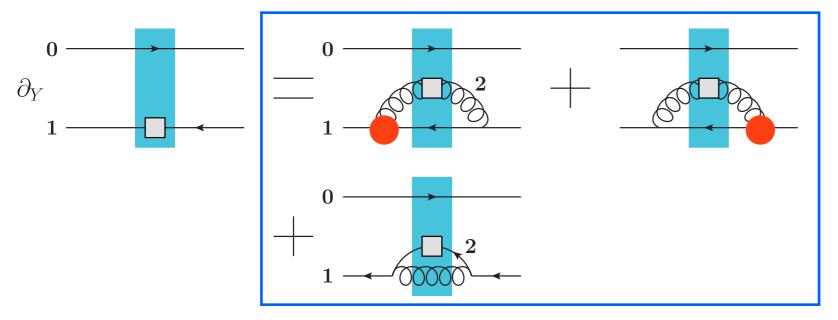
A Mess of Non-Ladder Gluons

- Non-ladder gluons can stack in complex ways which still generate leading logarithms.
- → Polarized gluons can "jump a rung" of evolution
- ➡ Even unpolarized BK evolution in an intermediate step can contribute!
- → Unpolarized evolution is in a color-octet state (unlike ordinary BK evolution)



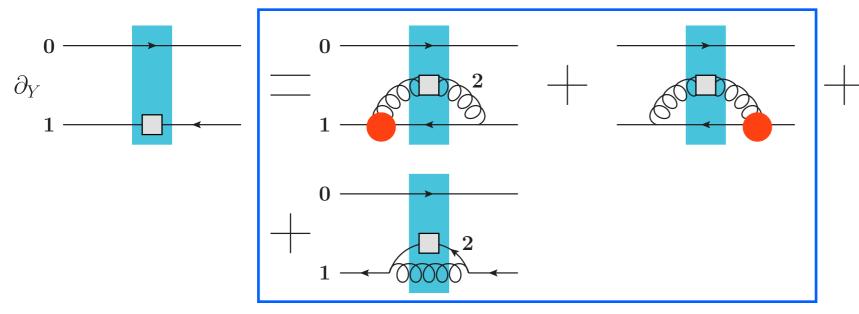
Helicity Evolution: Polarized Dipole Operator

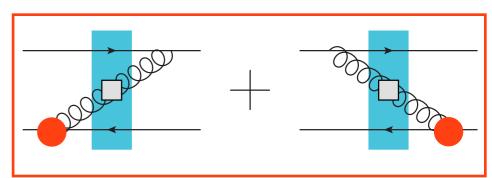
Ladder:



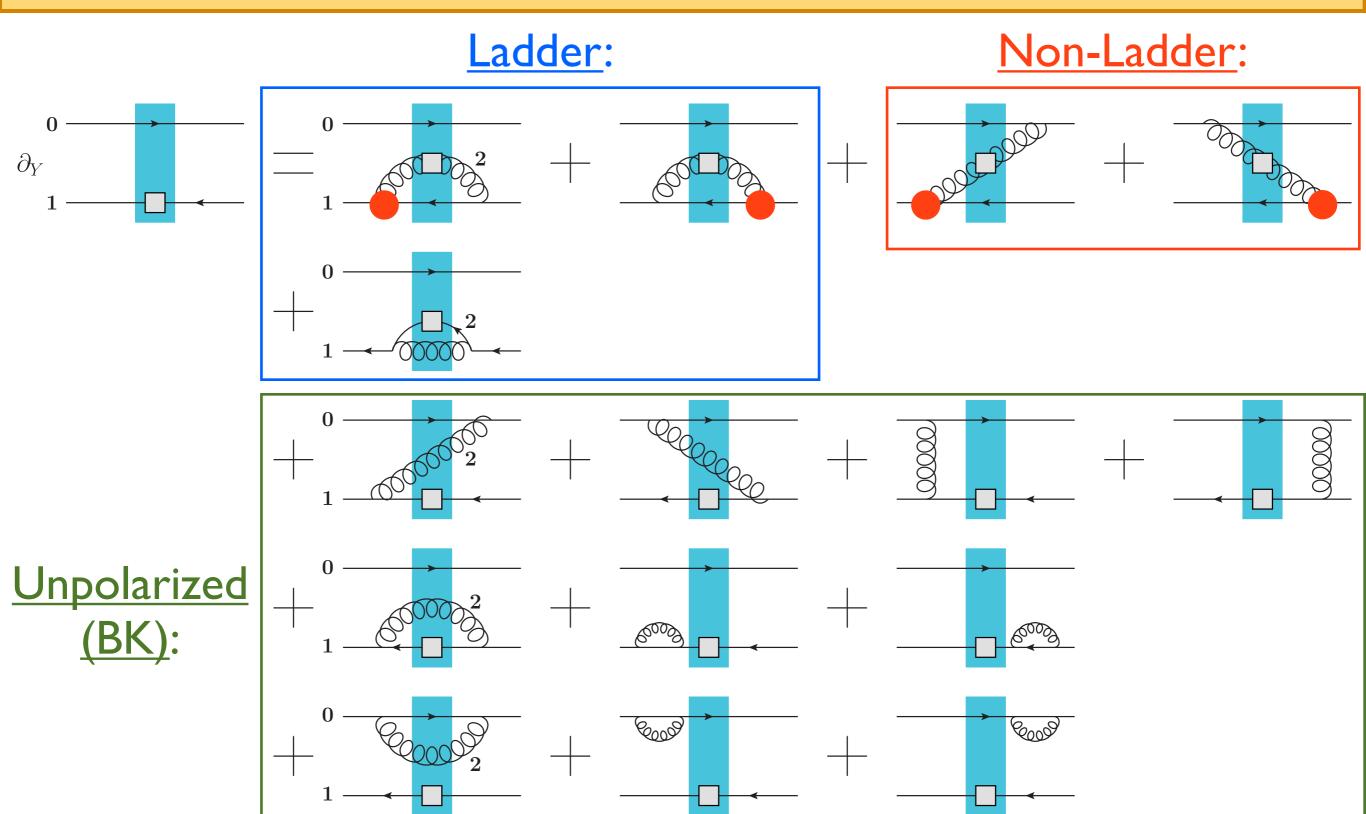
Helicity Evolution: Polarized Dipole Operator

Non-Ladder:

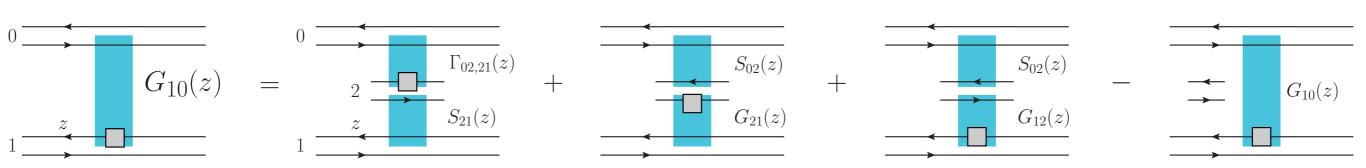




Helicity Evolution: Polarized Dipole Operator

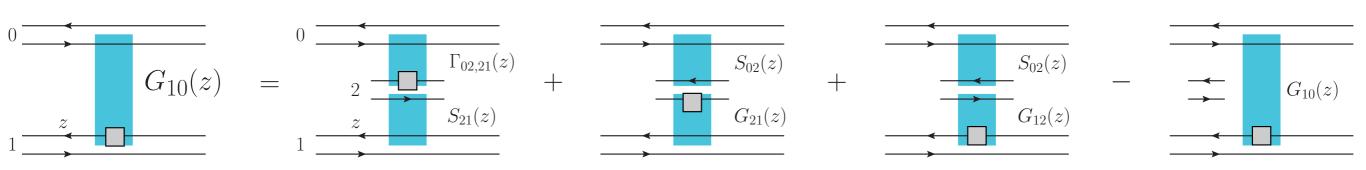


Trying to Solve It: The Large N_c Approximation



- The evolution yields another infinite operator hierarchy
- ightharpoonup Closes in the large N_c limit, like BK evolution.
- → But not physically relevant: neglects quark exchange

Trying to Solve It: The Large N_c Approximation

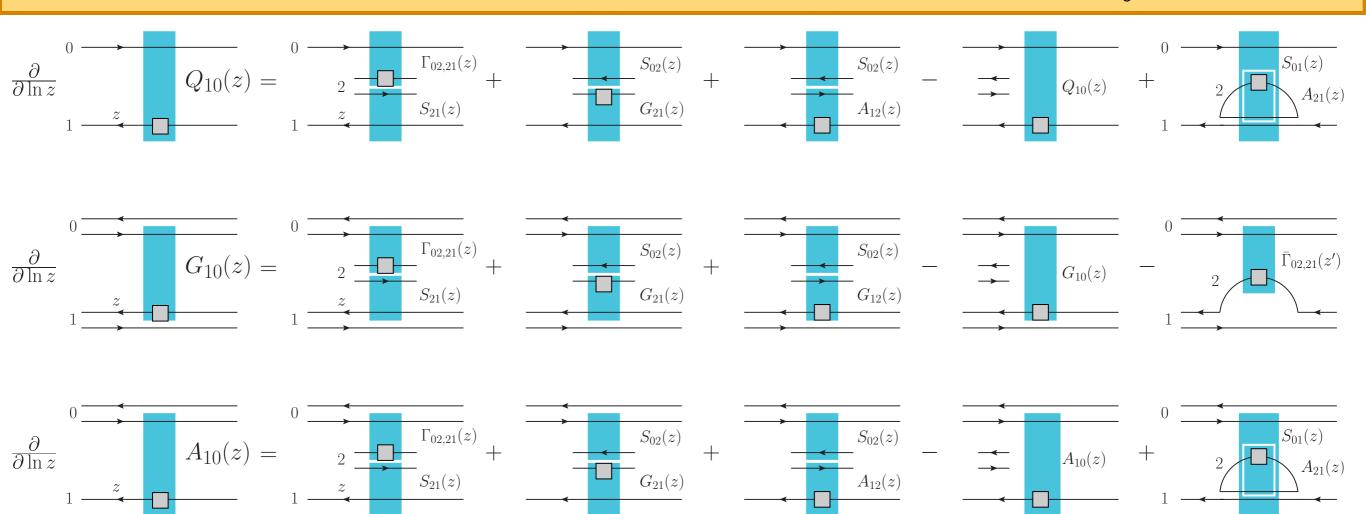


- The evolution yields another infinite operator hierarchy
- ightharpoonup Closes in the large N_c limit, like BK evolution.
- → But not physically relevant: neglects quark exchange
- The transverse ordering condition is not automatically satisfied.

$$Q^2 \ll \frac{k_{1T}^2}{z_1} \ll \frac{k_{2T}^2}{z_2} \ll \cdots$$

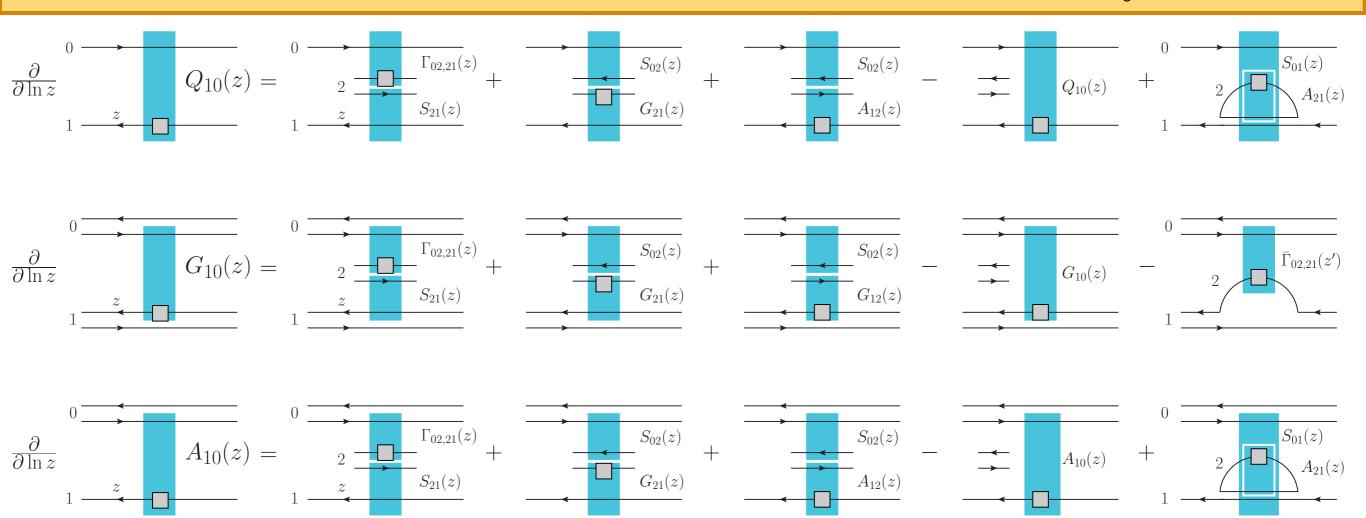
- → Polarized dipoles can depend on their "neighbors"
- ightharpoonup More complex than the large N_c BK equation.

A Better Approximation: Large N_c , N_f



ullet To keep quark contributions, must also take N_f large.

A Better Approximation: Large N_c , N_f



- ullet To keep quark contributions, must also take N_f large.
- \rightarrow Must distinguish between dipoles made of actual quarks vs. large N_c gluons.
- ⇒ Evolution equation closes, but even more complicated....

- Can we solve the helicity evolution in ANY systematic approximation?
 - Large N_c , N_f ? Only large N_c ?
 - Does the growth persist at small x?

- Can we solve the helicity evolution in ANY systematic approximation?
 - Large N_c , N_f ? Only large N_c ?
 - Does the growth persist at small x?
- What is the role of saturation?
 - Does multiple unpolarized scattering reduce the intercept?
 - Does saturation keep the IR sector from becoming nonperturbative?

- Can we solve the helicity evolution in ANY systematic approximation?
 - Large N_c , N_f ? Only large N_c ?
 - Does the growth persist at small x?
- What is the role of saturation?
 - Does multiple unpolarized scattering reduce the intercept?
 - Does saturation keep the IR sector from becoming nonperturbative?
- Do we need single log corrections?
 - Leading log evolution of the unpolarized gauge link.
 - Subleading evolution of the polarized matrix element.

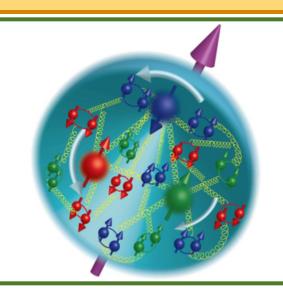
- Can we solve the helicity evolution in ANY systematic approximation?
 - Large N_c , N_f ? Only large N_c ?
 - Does the growth persist at small x?
- What is the role of saturation?
 - Does multiple unpolarized scattering reduce the intercept?
 - Does saturation keep the IR sector from becoming nonperturbative?
- Do we need single log corrections?
 - Leading log evolution of the unpolarized gauge link.
 - Subleading evolution of the polarized matrix element.
- What about other polarization observables like transversity?

Summary

- Up to 35% of the proton angular momentum is unaccounted for.
 - ⇒ Is there significant polarization at small x?

$$\Delta \Sigma \approx 0.25 \ (25\%)$$

 $\Delta G \approx 0.2 \ (40\%)$

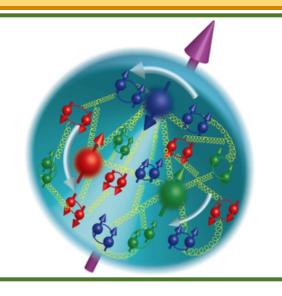


Summary

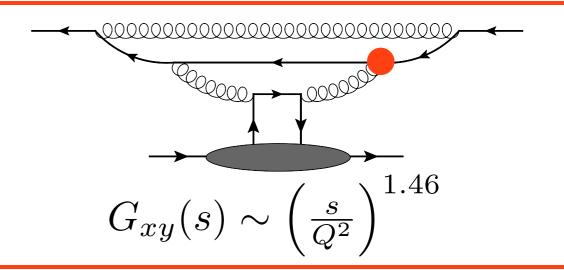
- Up to 35% of the proton angular momentum is unaccounted for.
 - ⇒ Is there significant polarization at small x?

$$\Delta \Sigma \approx 0.25 \ (25\%)$$

 $\Delta G \approx 0.2 \ (40\%)$



- Quark / gluon splitting leads to double-logarithmic evolution
 - → Ladder graphs: rapid growth of polarization with small x!

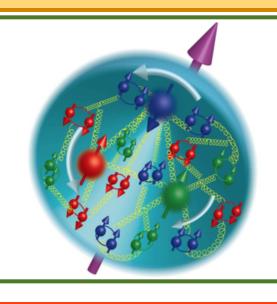


Summary

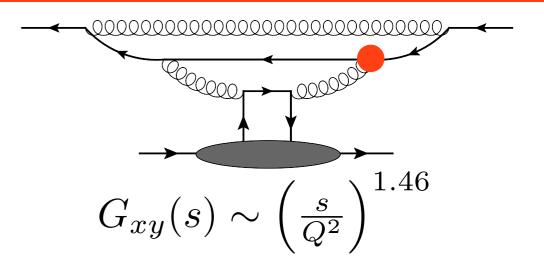
- Up to 35% of the proton angular momentum is unaccounted for.
 - ⇒ Is there significant polarization at small x?

$$\Delta \Sigma \approx 0.25 \ (25\%)$$

 $\Delta G \approx 0.2 \ (40\%)$



- Quark / gluon splitting leads to double-logarithmic evolution
 - → Ladder graphs: rapid growth of polarization with small x!



- Massive complications due to nonladder gluons and IR phase space.
 - → Much more to discover just around the corner!

